Love Canal Case Study Ppt Presentation

Presentation on theme: "Chapter 22 Solid and Hazardous Waste. Core Case Study: Love Canal — There Is No “Away”  Between 1842-1953, Hooker Chemical sealed multiple chemical wastes."— Presentation transcript:

1 Chapter 22 Solid and Hazardous Waste

2 Core Case Study: Love Canal — There Is No “Away”  Between 1842-1953, Hooker Chemical sealed multiple chemical wastes into steel drums and dumped them into an old canal excavation (Love Canal).  In 1953, the canal was filled and sold to Niagara Falls school board for $1.  The company inserted a disclaimer denying liability for the wastes.

3 Core Case Study: Love Canal — There Is No “Away”  In 1957, Hooker Chemical warned the school not to disturb the site because of the toxic waste. In 1959 an elementary school, playing fields and homes were built disrupting the clay cap covering the wastes. In 1959 an elementary school, playing fields and homes were built disrupting the clay cap covering the wastes. In 1976, residents complained of chemical smells and chemical burns from the site. In 1976, residents complained of chemical smells and chemical burns from the site.

4 Core Case Study: Love Canal — There Is No “Away”  President Jimmy Carter declared Love Canal a federal disaster area. The area was abandoned in 1980 (left). The area was abandoned in 1980 (left). Figure 22-1

5 Core Case Study: Love Canal — There Is No “Away”  It still is a controversy as to how much the chemicals at Love Canal injured or caused disease to the residents.  Love Canal sparked creation of the Superfund law, which forced polluters to pay for cleaning up abandoned toxic waste dumps.

6 WASTING RESOURCES  Solid waste: any unwanted or discarded material we produce that is not a liquid or gas. Municipal solid waste (MSW): produce directly from homes. Municipal solid waste (MSW): produce directly from homes. Industrial solid waste: produced indirectly by industries that supply people with goods and services. Industrial solid waste: produced indirectly by industries that supply people with goods and services.  Hazardous (toxic) waste: threatens human health or the environment because it is toxic, chemically active, corrosive or flammable.

7 WASTING RESOURCES  Solid wastes polluting a river in Jakarta, Indonesia. The man in the boat is looking for items to salvage or sell.

8 Electronic Waste: A Growing Problem  E-waste consists of toxic and hazardous waste such as PVC, lead, mercury, and cadmium.  The U.S. produces almost half of the world's e-waste but only recycles about 10% of it. Figure 22-4

9 Solutions: Reducing Solid Waste  Refuse: to buy items that we really don’t need.  Reduce: consume less and live a simpler and less stressful life by practicing simplicity.  Reuse: rely more on items that can be used over and over.  Repurpose: use something for another purpose instead of throwing it away.  Recycle: paper, glass, cans, plastics…and buy items made from recycled materials.

10

11

12

13

14

15

16

17

18

19

20 Case Study: Using Refillable Containers  Refilling and reusing containers uses fewer resources and less energy, produces less waste, saves money, and creates jobs. In Denmark and Canada’s Price Edward’s Island there is a ban on all beverage containers that cannot be reused. In Denmark and Canada’s Price Edward’s Island there is a ban on all beverage containers that cannot be reused. In Finland 95% of soft drink and alcoholic beverages are refillable (Germany 75%). In Finland 95% of soft drink and alcoholic beverages are refillable (Germany 75%).

21 Solutions: Other Ways to Reuse Things  We can use reusable shopping bags, food containers, and shipping pallets, and borrow tools from tool libraries. Many countries in Europe and Asia charge shoppers for plastic bags. Many countries in Europe and Asia charge shoppers for plastic bags.

22 RECYCLING  Primary (closed loop) recycling: materials are turned into new products of the same type.  Secondary recycling: materials are converted into different products. Used tires shredded and converted into rubberized road surface. Used tires shredded and converted into rubberized road surface. Newspapers transformed into cellulose insulation. Newspapers transformed into cellulose insulation.

23 RECYCLING  Composting biodegradable organic waste mimics nature by recycling plant nutrients to the soil.  Recycling paper has a number of environmental (reduction in pollution and deforestation, less energy expenditure) and economic benefits and is easy to do.

24 RECYCLING  Recycling many plastics is chemically and economically difficult. Many plastics are hard to isolate from other wastes. Many plastics are hard to isolate from other wastes. Recovering individual plastic resins does not yield much material. Recovering individual plastic resins does not yield much material. The cost of virgin plastic resins in low than recycled resins due to low fossil fuel costs. The cost of virgin plastic resins in low than recycled resins due to low fossil fuel costs. There are new technologies that are making plastics biodegradable. There are new technologies that are making plastics biodegradable.

25 BURNING AND BURYING SOLID WASTE  Globally, MSW is burned in over 1,000 large waste-to-energy incinerators, which boil water to make steam for heating water, or space, or for production of electricity. Japan and a few European countries incinerate most of their MSW. Japan and a few European countries incinerate most of their MSW.

26 Burning Solid Waste  Waste-to-energy incinerator with pollution controls that burns mixed solid waste. Figure 22-10

27 Burying Solid Waste  Most of the world’s MSW is buried in landfills that eventually are expected to leak toxic liquids into the soil and underlying aquifers. Open dumps: are fields or holes in the ground where garbage is deposited and sometimes covered with soil. Mostly used in developing countries. Open dumps: are fields or holes in the ground where garbage is deposited and sometimes covered with soil. Mostly used in developing countries. Sanitary landfills: solid wastes are spread out in thin layers, compacted and covered daily with a fresh layer of clay or plastic foam. Sanitary landfills: solid wastes are spread out in thin layers, compacted and covered daily with a fresh layer of clay or plastic foam.

28 Fig. 22-12, p. 532 Sand When landfill is full, layers of soil and clay seal in trash Methane storage and compressor building Leachate storage tank Leachate monitoring well Groundwater monitoring well Electricity generator building Leachate treatment system Methane gas recovery well Compacted solid waste Leachate pipes Leachate pumped up to storage tank for safe disposal Groundwater Clay and plastic lining to prevent leaks; pipes collect leachate from bottom of landfill Topsoil Sand Clay Subsoil Probes to detect methane leaks Garbage Synthetic liner Sand Clay Pipes collect explosive methane as used as fuel to generate electricity

29 Case Study: What Should We Do with Used Tires?  We face a dilemma in deciding what to so with hundreds of millions of discarded tires. Figure 22-14

30 HAZARDOUS WASTE  Hazardous waste: is any discarded solid or liquid material that is toxic, ignitable, corrosive, or reactive enough to explode or release toxic fumes. The two largest classes of hazardous wastes are organic compounds (e.g. pesticides, PCBs, dioxins) and toxic heavy metals (e.g. lead, mercury, arsenic). The two largest classes of hazardous wastes are organic compounds (e.g. pesticides, PCBs, dioxins) and toxic heavy metals (e.g. lead, mercury, arsenic).

31 Hazardous Waste Regulations in the United States  Two major federal laws regulate the management and disposal of hazardous waste in the U.S.: Resource Conservation and Recovery Act (RCRA) Resource Conservation and Recovery Act (RCRA) Cradle-to-the-grave system to keep track waste.Cradle-to-the-grave system to keep track waste. Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Commonly known as Superfund program.Commonly known as Superfund program.

32 Hazardous Waste Regulations in the United States  The Superfund law was designed to have polluters pay for cleaning up abandoned hazardous waste sites. Only 70% of the cleanup costs have come from the polluters, the rest comes from a trust fund financed until 1995 by taxes on chemical raw materials and oil. Only 70% of the cleanup costs have come from the polluters, the rest comes from a trust fund financed until 1995 by taxes on chemical raw materials and oil.

33 DEALING WITH HAZARDOUS WASTE  We can produce less hazardous waste and recycle, reuse, detoxify, burn, and bury what we continue to produce. Figure 22-16

34 Fig. 22-16, p. 536 Ocean and atmospheric assimilation Produce Less Waste Recycle and reuse Convert to Less Hazardous or Nonhazardous Substances Manipulate processes to eliminate or reduce production Land treatment Landfill Incineration Thermal treatment Put in Perpetual Storage Underground injection Waste piles Surface impoundments Salt formations Arid region unsaturated zone Chemical, physical, and biological treatment

35 Conversion to Less Hazardous Substances  Physical Methods: using charcoal or resins to separate out harmful chemicals.  Chemical Methods: using chemical reactions that can convert hazardous chemicals to less harmful or harmless chemicals.

36 Conversion to Less Hazardous Substances  Incineration: heating many types of hazardous waste to high temperatures – up to 2000 °C – in an incinerator can break them down and convert them to less harmful or harmless chemicals.

37 Conversion to Less Hazardous Substances  Plasma Torch: passing electrical current through gas to generate an electric arc and very high temperatures can create plasma. The plasma process can be carried out in a torch which can decompose liquid or solid hazardous organic material. The plasma process can be carried out in a torch which can decompose liquid or solid hazardous organic material.

38 Long-Term Storage of Hazardous Waste  Long-Term Retrievable Storage: Some highly toxic materials cannot be detoxified or destroyed. Metal drums are used to stored them in areas that can be inspected and retrieved.  Secure Landfills: Sometimes hazardous waste are put into drums and buried in carefully designed and monitored sites.

39 Secure Hazardous Waste Landfill  In the U.S. there are only 23 commercial hazardous waste landfills. Figure 22-22

40 Fig. 22-22, p. 540 Bulk waste Gas vent Topsoil Earth Plastic cover Clay cap Double leachate collection system Plastic double liner Impervious clay cap Leak detection system Reactive wastes in drums Groundwater monitoring well Groundwater Water table Earth Impervious clay Sand

41 Case Study: Lead  Lead is especially harmful to children and is still used in leaded gasoline and household paints in about 100 countries. Figure 22-24

42 Case Study: Mercury  Mercury is released into the environment mostly by burning coal and incinerating wastes and can build to high levels in some types of fish. Figure 22-26

43 Fig. 22-25, p. 542 BIOMAGNIFICATION IN FOOD CHAIN SEDIMENT PRECIPITATION WINDS AIR WATER Inorganic mercury and acids (Hg 2+ ) Inorganic mercury and acids (Hg 2+ ) Organic mercury (CH 3 Hg + ) Inorganic mercury (Hg 2+ ) Hg 2+ and acids Runoff of Hg 2+ and acids Large fish Small fish ZooplanktonPhytoplankton Hg and SO 2 Hg 2 + and acids Human sources Incinerator Coal- burning plant Elemental mercury vapor (Hg) Photo- chemical Oxidation Elemental mercury liquid (Hg) Deposition Bacteria and acids Settles out Settles out Settles out Vaporization Deposition

44 ACHIEVING A LOW-WASTE SOCIETY  In the U.S., citizens have kept large numbers of incinerators, landfills, and hazardous waste treatment plants from being built in their local areas.  Environmental justice means that everyone is entitled to protection from environmental hazards without discrimination.

45 Global Outlook: International Action to Reduce Hazardous Waste  An international treaty calls for phasing out the use of harmful persistent organic pollutants (POPs). POPs are insoluble in water and soluble in fat. POPs are insoluble in water and soluble in fat. Nearly every person on earth has detectable levels of POPs in their blood. Nearly every person on earth has detectable levels of POPs in their blood. The U.S has not ratified this treaty. The U.S has not ratified this treaty.

46 Making the Transition to a Low-Waste Society: A New Vision  Everything is connected.  There is no “away” for the wastes we produce.  Dilution is not always the solution to pollution.  The best and cheapest way to deal with wastes are reduction and pollution prevention.

6.5 Case Study: The Love Canal Disaster

One of the most famous and important examples of groundwater pollution in the U.S. is the Love Canal tragedy in Niagara Falls, New York. It is important because the pollution disaster at Love Canal, along with similar pollution calamities at that time (Times Beach, Missouri and Valley of Drums, Kentucky), helped to create Superfund, a federal program instituted in 1980 and designed to identify and clean up the worst of the hazardous chemical waste sites in the U.S.

Love Canal is a neighborhood in Niagara Falls named after a large ditch (approximately 15 m wide, 3–12 m deep, and 1600 m long) that was dug in the 1890s for hydroelectric power. The ditch was abandoned before it actually generated any power and went mostly unused for decades, except for swimming by local residents. In the 1920s Niagara Falls began dumping urban waste into Love Canal, and in the 1940s the U.S. Army dumped waste from World War II there, including waste from the frantic effort to build a nuclear bomb. Hooker Chemical purchased the land in 1942 and lined it with clay. Then, the company put into Love Canal an estimated 21,000 tons of hazardous chemical waste, including the carcinogens benzene, dioxin, and PCBs in large metal barrels and covered them with more clay. In 1953, Hooker sold the land to the Niagara Falls school board for $1, and included a clause in the sales contract that both described the land use (filled with chemical waste) and absolved them from any future damage claims from the buried waste. The school board promptly built a public school on the site and sold the surrounding land for a housing project that built 200 or so homes along the canal banks and another 1,000 in the neighborhood (Figure 1). During construction, the canal’s clay cap and walls were breached, damaging some of the metal barrels.

Figure 1. Love Canal. Source: US Environmental Protection Agency

Eventually, the chemical waste seeped into people’s basements, and the metal barrels worked their way to the surface. Trees and gardens began to die; bicycle tires and the rubber soles of children’s shoes disintegrated in noxious puddles. From the 1950s to the late 1970s, residents repeatedly complained of strange odors and substances that surfaced in their yards. City officials investigated the area, but did not act to solve the problem. Local residents allegedly experienced major health problems including high rates of miscarriages, birth defects, and chromosome damage, but studies by the New York State Health Department disputed that. Finally, in 1978 President Carter declared a state of emergency at Love Canal, making it the first human-caused environmental problem to be designated that way. The Love Canal incident became a symbol of improperly stored chemical waste. Clean up of Love Canal, which was funded by Superfund and completely finished in 2004, involved removing contaminated soil, installing drainage pipes to capture contaminated groundwater for treatment, and covering it with clay and plastic. In 1995, Occidental Chemical (the modern name for Hooker Chemical) paid $102 million to Superfund for cleanup and $27 million to Federal Emergency Management Association for the relocation of more than 1,000 families. New York State paid $98 million to EPA and the US government paid $8 million for pollution by the Army. The total clean up cost was estimated to be $275 million.

The Love Canal tragedy helped to create Superfund, which has analyzed tens of thousands of hazardous waste sites in the U.S. and cleaned up hundreds of the worst ones. Nevertheless, over 1,000 major hazardous waste sites with a significant risk to human health or the environment are still in the process of being cleaned.

Attribution

Essentials of Environmental Science by Kamala Doršner is licensed under CC BY 4.0. Modified from the original by Matthew R. Fisher.

0 Thoughts to “Love Canal Case Study Ppt Presentation

Leave a comment

L'indirizzo email non verrà pubblicato. I campi obbligatori sono contrassegnati *